	Session 1	Session 2	Session 3	Session 4	Session 5	Total
Twists	63	69	61	72	70	335
Sprint starts	46	50	56	56	59	267
Spotty dogs	46	54	57	54	52	263
Burpees	13	15	12	15	16	71
Jumping Jacks	36	33	34	35	36	174
Squat thrust	20	23	20	24	20	107
Side to sides	54	60	61	64	62	301
Rock n' roller	13	14	12	14	14	67

Calculate: Apply skills to each exercise data set. You're welcome to use mine and/or 'handle' your own data.
$\underline{\text { Mean }}($ average $)=63+69+61+72+70=335 / 5=67$
Median $=61,63,{ }^{*} \underline{69}, 70,71$
Mode No modal value

Maximum $=72$
Minimum $=61$
Range $=72-61=11$

Investigating Pulse Rate

When our body moves and our muscles work, our heart has to work harder to pump blood around our bodies, helping to supply the extra oxygen and energy our muscles need. Our pulse rate is the number of times our heart beats in 1 minute. Rest Pulse is the number of times your heart beats in one minute when your body is at rest.

My predictions:
I predict that \qquad will
increase my pulse rate most.
I predict that \qquad will
increase my pulse rate the least.

	Rest Pulse	Pulse rate after $\mathbf{3 0}$ seconds	Increase in pulse rate
Twists			
Rock n' roller			
Sprint starts			
Spotty dogs			
Side to sides			
Burpees			

Conclusion: I have found out that

\qquad Conclusion: I have found out that \qquad
\qquad
\qquad
\qquad

