1a. Use the shapes below to create a compound rectilinear shape.	1b. Use the shapes below to create a compound rectilinear shape.
What is the perimeter of the shape?	
Is it the same as your neighbour's?	
Not to scale	

What is the possible length of the side marked A? Prove it.

Measure Perimeter

Measure Perimeter

4a. Use the shapes below to create a compound rectilinear shape.

Calculate the perimeter of your shape.
Now use the same shapes to create a compound rectilinear shape with a shorter perimeter.

Not to scale

5 a . The perimeter of this shape is 64 m .

What are the possible lengths for side A and for side B? Prove it.

Not to scale

6a. Orla cuts along the dotted line. She thinks the new perimeters are:
$A=22 \mathrm{~cm}$ and $B=36 \mathrm{~cm}$.

Is Orla correct? Prove it.

Not to scale

4b. Use the shapes below to create a compound rectilinear shape.

Calculate the perimeter of your shape.
Now use the same shapes to create a compound rectilinear shape with a longer perimeter.

Not to scale
5 b . The perimeter of this shape is 98 cm .

What are the possible lengths for side A and for side B? Prove it.

Not to scale
6b. Ronnie cuts along the dotted line. He thinks the new perimeters are:
$A=119 \mathrm{~m}$ and $B=91 \mathrm{~m}$.

Is Ronnie correct? Prove it.
Not to scale

Ta. Use the shapes below to create a
compound rectilinear shape.

3 cm

Calculate the perimeter of your shape.
Now use the same shapes to create a compound rectilinear shape with a longer perimeter.
Not to scale PS

8 a . The perimeter of this shape is 69 m .

A

The sides labelled \mathbf{A} are of equal length.
What is the length of A? Prove it.

Not to scale

Ya. Patrick cuts along the 50 cm dotted line. He thinks the new perimeters are:
$A=2.05 \mathrm{~m}$ and $B=2.3 \mathrm{~m}$.
A,

Is Patrick correct? Prove it.
Not to scale

7b. Use the shapes below to create a compound rectilinear shape.

Sm

E
O
O

Calculate the perimeter of your shape.
Now use the same shapes to create a compound rectilinear shape with a shorter perimeter.
,

8 b . The perimeter of this shape is $5,870 \mathrm{~cm}$.

All of the unknown measurements are equal. What is unknown length? Prove it.

Not to scale
9 b . Phillipa cuts along the 1.85 m dotted line. She thinks the new perimeters are: $A=6.1 \mathrm{~m}$ and $B=7.79 \mathrm{~m}$.

Is Phillipa correct? Prove it.
Not to scale

Reasoning and Problem Solving
 Measure Perimeter

Reasoning and Problem Solving

 Measure Perimeter
Developing

1a. Various answers, for example:

Perimeter $=16 \mathrm{~m}$
Children should also compare with a neighbour.
2 a . $\mathrm{A}=5 \mathrm{~m}$. The two given sides have a sum of 8 m . The remaining perimeter (10 m) is shared over 2 equal sides, therefore each side is 5 m .
3a. Theo is correct because:
$A=40 \mathrm{~cm}+40 \mathrm{~cm}+20 \mathrm{~cm}+20 \mathrm{~cm}=120 \mathrm{~cm}$
$B=70 \mathrm{~cm}+70 \mathrm{~cm}+40 \mathrm{~cm}+40 \mathrm{~cm}=220 \mathrm{~cm}$

Expected

4a. Various answers, for example:

Perimeter $=30 \mathrm{~m}$

Perimeter $=26 \mathrm{~m}$
$5 a$. The perimeter that can be worked out from the measurements provided is 60 cm . Therefore, the combined total for A and B must be 4 m . Various possible answers, for example:
$A=1.5 \mathrm{~m}$ and $B=2.5 \mathrm{~m}$.
6a. Orla is incorrect because:
$A=9 \mathrm{~cm}+9 \mathrm{~cm}+1.5 \mathrm{~cm}+1.5 \mathrm{~cm}=21 \mathrm{~cm}$
$B=3 \mathrm{~cm}-1.5 \mathrm{~cm}=1.5 \mathrm{~cm}$ and $9 \mathrm{~cm}-4.5 \mathrm{~cm}=$ 4.5 cm

Therefore, $1.5 \mathrm{~cm}+4.5 \mathrm{~cm}+7 \mathrm{~cm}+4.5 \mathrm{~cm}+7 \mathrm{~cm}+$ $1.5 \mathrm{~cm}+9 \mathrm{~cm}=35 \mathrm{~cm}$

Greater Depth

7a. Various answers, for example:

Perimeter $=72 \mathrm{~cm}$

7 unknown sides
$6.25 m+15.0 m+0.6 m+11.5 m+15.0 m=48.35 m$ $69 m-48.35 m=20.65 m$
$20.65 \mathrm{~m}(2,065 \mathrm{~cm}) \div 7=2.95 \mathrm{~m}(295 \mathrm{~cm})$
9 a. Patrick is incorrect because:
$\mathrm{A}=50 \mathrm{~cm}+20 \mathrm{~cm}+30 \mathrm{~cm}+25 \mathrm{~cm}+50 \mathrm{~cm}+25 \mathrm{~cm}=$ $200 \mathrm{~cm}=2 \mathrm{~m}$
$B=50 \mathrm{~cm}+35 \mathrm{~cm}+20 \mathrm{~cm}+35 \mathrm{~cm}+25 \mathrm{~cm}+50 \mathrm{~cm}+$ $25 \mathrm{~cm}=240 \mathrm{~cm}=2.4 \mathrm{~m}$

Developing

1b. Various answers for example:

Perimeter $=72 \mathrm{~cm}$
Children should also compare with a neighbour. 2b. $A=3 \mathrm{~cm}$. The two given sides have a sum of 14 cm . The remaining perimeter (12 cm) is shared over 4 equal sides, therefore each side is 3 cm .
3b. Annis is incorrect because:
$A=8 m+8 m+40 m+40 m=96 m$
$B=(20 m-8 m=12 m) 12 m+12 m+40 m+40 m=$ 104m

Expected

4b. Various answers, for example:

Perimeter $=47 \mathrm{~m}$

Perimeter $=57 \mathrm{~m}$

5b. The perimeter that can be worked out from the measurements provided is 54 cm . Therefore, the combined total for A and B must be 11 cm . Various possible answers, for example:
$A=4.5 \mathrm{~cm}$ and $B=6.5 \mathrm{~cm}$.
6b. Ronnie is correct because:
$A=(45 m-15 m=29.5 m) 29.5 m+29.5 m+30+30=$ 119m
$B=15.5 m+15.5 m+30 m+30 m=91 m$

Greater Depth

7b. Various answers, for example:

Perimeter $=43 \mathrm{~m} \quad$ Perimeter $=41 \mathrm{~m}$
8b. Each side $=240 \mathrm{~cm}(2.4 \mathrm{~m})$
18 unknown sides
$7.75 \mathrm{~m} \times 2=15.5 \mathrm{~m}(1,550 \mathrm{~cm})$
$5,870 \mathrm{~cm}-1,550 \mathrm{~cm}=4,320 \mathrm{~cm}$
$4,320 \mathrm{~cm} \div 18=240 \mathrm{~cm}$
9b. Phillipa is correct because:
$A=(60 \mathrm{~cm}+60 \mathrm{~cm}=120 \mathrm{~cm})$ and $(360 \mathrm{~cm}-120 \mathrm{~cm}$ $=240 \mathrm{~cm}$)
Therefore, $185 \mathrm{~cm}+50 \mathrm{~cm}+60 \mathrm{~cm}+75 \mathrm{~cm}+240 \mathrm{~cm}$
$=610 \mathrm{~cm}=6.1 \mathrm{~m}$
$B=185 \mathrm{~cm}+124 \mathrm{~cm}+360 \mathrm{~cm}+50 \mathrm{~cm}+60 \mathrm{~cm}=$ $779 \mathrm{~cm}=7.79 \mathrm{~m}$

