Reasoning and Problem Solving Step 4: Area of Rectangles

National Curriculum Objectives:

Mathematics Year 5: (5M7b) Calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes

Differentiation:

Questions 1, 4 and 7 (Problem Solving)
Developing Use dimensions of a smaller shape, to calculate the area of a larger rectangle. Includes squares and whole numbers up to 12×12.
Expected Use dimensions of a smaller shape, to calculate the area of a larger rectangle. Includes using a formula and multiplying 2 -digit numbers by 1.
Greater Depth Use dimensions of a smaller shape, to calculate an area of a larger rectangle. Includes using a formula and decimal numbers.

Questions 2, 5 and 8 (Problem Solving)
Developing Use the area to calculate the possible dimensions of a rectangle. Whole numbers up to 12×12.
Expected Use the area to calculate the possible dimensions of a rectangle. Includes using a formula and multiplying 2-digit numbers by 1 .
Greater Depth Use the area to calculate the possible dimensions of a rectangle. Includes using a formula and decimal numbers.

Questions 3, 6 and 9 (Reasoning)
Developing Explain mistakes made when calculating the area of a rectangle. Whole numbers up to 12×12.
Expected Explain mistakes made when calculating the area of a rectangle. Includes using a formula and multiplying 2 -digit numbers by 1 .
Greater Depth Explain mistakes made when calculating the area of a rectangle. Includes using a formula and decimals numbers.

More resources which follow the same small steps as White Rose.

Did you like this resource? Don't forget to review it on our website.

1a. Using the information, calculate the area of the larger rectangle.

Each square in the smaller rectangle $=1 \mathrm{~cm}^{2}$. What is the area of the larger rectangle?

2a. This rectangle has an area of $36 \mathrm{~cm}^{2}$. What could the dimensions be? Include a range of possible answers.

Not to scale
3a. Katy says,
The area of this rectangle is $125 \mathrm{~cm}^{2}$.

Explain Katy's mistake.

Not to scale

1b. Using the information, calculate the area of the larger rectangle.

Each square in the smaller rectangle $=1 \mathrm{~cm}^{2}$. What is the area of the larger rectangle?

Not to scale
2b. This rectangle has an area of $84 \mathrm{~cm}^{2}$. What could the dimensions be? Include a range of possible answers.

Not to scale
3b. Paul says,

Explain Paul's mistake.

Area of Rectangles

4a. Using the information, calculate the area of the larger rectangle.

The larger rectangle has sides that are 3 times as long as the smaller one.

Not to scale
5a. This rectangle has an area of $96 \mathrm{~cm}^{2}$. What could the dimensions be? Include a range of possible answers.
\square

Not to scale
6a. Enid says,

Explain Enid's mistake.

Not to scale

4b. Using the information, calculate the area of the larger square.

The smaller square has sides that are half the size of the larger square.

Not to scale
5b. This rectangle has an area of $72 \mathrm{~cm}^{2}$. What could the dimensions be? Include a range of possible answers.

Not to scale
6b. Howard says,

Explain Howard's mistake.

7a. Using the information, calculate the area of the larger rectangle.
?

The larger rectangle has sides that are 3 times as long as the smaller one.

Not to scale
8 a . This rectangle has an area of $171 \mathrm{~cm}^{2}$. What could the dimensions be? Include a range of possible decimal answers.

Not to scale
9a. Cara says,

7b. Using the information, calculate the area of the larger rectangle.

The smaller rectangle has sides that are half the size of the larger one.

Not to scale
8 b . This rectangle has an area of $80.4 \mathrm{~cm}^{2}$. What could the dimensions be? Include a range of possible decimal answers.

Not to scale

9b. Saul says,

Explain Saul's mistake.

Reasoning and Problem Solving

Area of Rectangles

Developing

1a. $36 \mathrm{~cm}^{2}$
2a. Various answers, for example:
$9 \mathrm{~cm} \times 4 \mathrm{~cm}, 12 \mathrm{~cm} \times 3 \mathrm{~cm}, 18 \mathrm{~cm} \times 2 \mathrm{~cm}$
3a. Katy has incorrectly worked out the area. She has multiplied together the opposing sides and then added them together. She should have multiplied $10 \mathrm{~cm} \times 5 \mathrm{~cm}$ to give her an area of $50 \mathrm{~cm}^{2}$.

Expected

4a. $810 \mathrm{~cm}^{2}$
5a. Various answers, for example:
$12 \mathrm{~cm} \times 8 \mathrm{~cm}, 24 \mathrm{~cm} \times 4 \mathrm{~cm}, 48 \mathrm{~cm} \times 2 \mathrm{~cm}$
6a. Enid has added up all the sides and worked out the perimeter and not the area.
The correct answer is $25 \mathrm{~cm} \times 9 \mathrm{~cm}=$ $225 \mathrm{~cm}^{2}$.

Greater Depth

$7 \mathrm{a} .148 .5 \mathrm{~cm}^{2}$
8a. Various answers, for example:
$28.5 \mathrm{~cm} \times 6 \mathrm{~cm}, 57 \mathrm{~cm} \times 3 \mathrm{~cm}, 34.2 \mathrm{~cm} \times$ 5 cm
9a. Cara has multiplied together the given dimensions, however she has not realised that they are two different units of measure. To work out the answer, Cara should change the 90 mm into 9 cm and then multiply by 5 cm to give an area of $45 \mathrm{~cm}^{2}$.

Developing

1b. $28 \mathrm{~cm}^{2}$
2b. Various answers, for example:
$12 \mathrm{~cm} \times 7 \mathrm{~cm}, 21 \mathrm{~cm} \times 4 \mathrm{~cm}, 42 \mathrm{~cm} \times 2 \mathrm{~cm}$
3b. Paul has added together the dimensions given instead of multiplying them.
The correct answer is $12 \mathrm{~cm} \times 6 \mathrm{~cm}=$ $72 \mathrm{~cm}^{2}$.

Expected

4b. $196 \mathrm{~cm}^{2}$
5b. Various answers, for example:
$36 \mathrm{~cm} \times 2 \mathrm{~cm}, 18 \mathrm{~cm} \times 4 \mathrm{~cm}, 9 \mathrm{~cm} \times 8 \mathrm{~cm}$ 6b. Howard has added together the two given dimensions instead of multiplying them.
The correct answer is $50 \mathrm{~cm} \times 6 \mathrm{~cm}=$ $300 \mathrm{~cm}^{2}$.

Greater Depth

7b. $86.4 \mathrm{~cm}^{2}$
8b. Various answers, for example:
$20.1 \mathrm{~cm} \times 4 \mathrm{~cm}, 40.2 \mathrm{~cm} \times 2 \mathrm{~cm}, 6.7 \mathrm{~cm} \times$ 12 cm
9b. Saul has added up all the sides and worked out the perimeter and not the area.
The correct answer is $2.5 \mathrm{~cm} \times 6 \mathrm{~cm}=$ $15 \mathrm{~cm}^{2}$.

