Area of Compound Shapes

Area of Compound Shapes

1a. Each square has an area of $4 \mathrm{~cm}^{2}$.

> Show 3 different compound shapes that have an area of $16 \mathrm{~cm}^{2}$.

1b. Each square has an area of $\mathbf{2 c m} \mathbf{2}^{\mathbf{2}}$.

Show 3 different compound shapes that have an area of $12 \mathrm{~cm}^{2}$.

2a. Add the missing lengths to make the following statement correct.

A has an area of $45 \mathrm{~cm}^{2}$ and B has an area of $25 \mathrm{~cm}^{2}$.

Not to scale
3a. Muna thinks the area of the shape is $108 \mathrm{~cm}^{2}$.

Is Muna correct? Convince me.

Not to scale

2b. Add the missing lengths to make the following statement correct.

14 cm

A has an area of $48 \mathrm{~cm}^{2}$ and B has an area of $48 \mathrm{~cm}^{2}$.

Not to scale

3b. Ryan thinks the area of the shape is $24 \mathrm{~cm}^{2}$.

Is Ryan correct? Convince me.

Not to scale

4a. Each square has an area of $400 \mathrm{~mm}^{2}$.

Show 4 different compound shapes that have an area of $36 \mathrm{~cm}^{2}$.

4b. Each square has an area of $5 \mathrm{~cm}^{2}$.

Show 4 different compound shapes that have an area of $400 \mathrm{~mm}^{2}$.

Not to scale

5a. Add the missing lengths to make the following statement correct.

> A has an area of $84 \mathrm{~cm}^{2}$ and B has an area of $49 \mathrm{~cm}^{2}$.

Not to scale
6a. Josie thinks the area of the shape is $54 \mathrm{~cm}^{2}$.

Is Josie correct? Convince me.

Classroom Secrets Limited 2018

Area of Compound Shapes

Area of Compound Shapes

7a. Each square has an area of $1.5 \mathrm{~cm}^{2}$.

Show 5 different compound shapes that have an area of $120 \mathrm{~mm}^{2}$.

7b. Each square has an area of $2.2 \mathrm{~cm}^{2}$.

Show 5 different compound shapes that have an area of $220 \mathrm{~mm}^{2}$.

Not to scale

8a. Add the missing lengths to make the following statement correct.

A has an area that is twice as large as B.

8b. Add the missing lengths to make the following statement correct.

A has an area that is twice as large as B.

Not to scale
9b. Saul thinks the area of the shape must be bigger than $35 \mathrm{~cm}^{2}$.

Is Saul correct? Convince me.

Reasoning and Problem Solving Area of Compound Shapes

Developing

1a. Various possible answers. Accept any compound shapes with an area of $16 \mathrm{~cm}^{2}$.
Each shape should have 4 squares shaded.
2a. $A=9 \times 5=45 \mathrm{~cm}^{2} ; B=5 \times 5=25 \mathrm{~cm}^{2}$
3a. Muna is incorrect.
$12 \mathrm{~cm} \times 2 \mathrm{~cm}=24 \mathrm{~cm}^{2}$
$12 \mathrm{~cm} \times 6 \mathrm{~cm}=72 \mathrm{~cm}^{2}$
$72 \mathrm{~cm}^{2}+24 \mathrm{~cm}^{2}=96 \mathrm{~cm}^{2}$

Expected

4a. Various possible answers. Accept any compound shapes with an area of $36 \mathrm{~cm}^{2}$. Each shape should have 9 squares shaded.
5a. Various possible answers, including; $A=7 \times 12=84 \mathrm{~cm}^{2} ; B=7 \times 7=49 \mathrm{~cm}^{2}$
6a. Josie is incorrect.
$9 \mathrm{~cm} \times 40 \mathrm{~mm}=36 \mathrm{~cm}^{2}$
$7 \mathrm{~cm} \times 30 \mathrm{~mm}=21 \mathrm{~cm}^{2}$
$36 \mathrm{~cm}^{2}+21 \mathrm{~cm}^{2}=57 \mathrm{~cm}^{2}$

Greater Depth

7a. Various possible answers. Accept any compound shape with an area of $12 \mathrm{~cm}^{2}$. Each shape should have 8 squares shaded.
8a. Various possible answers, including; $A=16 \times 0.7=11.2 \mathrm{~m}^{2} ; B=8 \times 0.7=5.6 \mathrm{~m}^{2}$. Accept any reasonable answer where A is twice as big as B.
9a. Flora is not correct. As the missing measurement is unclear, it is important to work out what we do know. We know that $9 \times 2.5=22.5 \mathrm{~cm}^{2}$ and we also know one of the other sides is 2 cm . If the missing number is less than 3.75 cm , then the total area would be less than $30 \mathrm{~cm}^{2}$. However, the missing length could be greater than 3.75 cm , so the area could be greater than $30 \mathrm{~cm}^{2}$

Reasoning and Problem Solving Area of Compound Shapes

Developing

1b. Various possible answers. Accept any compound shapes with an area of $12 \mathrm{~cm}^{2}$. Each shape should have 6 squares shaded.
2b. Various possible answers, including;
$A=8 \times 6=48 \mathrm{~cm}^{2} ; B=6 \times 8=48 \mathrm{~cm}^{2}$
3b. Ryan is incorrect. $9 \mathrm{~cm} \times 6 \mathrm{~cm}=54 \mathrm{~cm}^{2}$
$6 \mathrm{~cm} \times 3 \mathrm{~cm}=18 \mathrm{~cm}^{2}$
$54 \mathrm{~cm}^{2}+18 \mathrm{~cm}^{2}=72 \mathrm{~cm}^{2}$

Expected

4b. Various possible answers. Accept any compound shapes with an area of $40 \mathrm{~cm}^{2}$ or $400 \mathrm{~mm}^{2}$. Each shape should have 8 squares shaded.
5b. Various possible answers, including; A $=6 \times 10=60 \mathrm{~cm}^{2} ; B=8 \times 6=48 \mathrm{~cm}^{2}$
6b. Oscar is incorrect. He has not converted the lengths so that they are all the same unit. The correct answer should be; $2.5 \mathrm{~cm} \times 5 \mathrm{~cm}=12.5 \mathrm{~cm}^{2}$
$3 \mathrm{~cm} \times 5 \mathrm{~cm}=15 \mathrm{~cm}^{2}$
$12.5 \mathrm{~cm}^{2}+15 \mathrm{~cm}^{2}=27.5 \mathrm{~cm}^{2}$

Greater Depth

7b. Various possible answers. Accept any compound shape with an area of $22 \mathrm{~cm}^{2}$. Each shape should have 10 squares shaded.
8b. Various possible answers, including; A $=14 \times 4=56 \mathrm{~cm}^{2} ; \mathrm{B}=14 \times 2=28 \mathrm{~cm}^{2}$.
Accept any reasonable answer where A is twice as big as B.
9b. It is possible for Saul to be correct. We already know part of the shape's area as $5 \times 5=25 \mathrm{~cm}^{2}$. We also know that on the unlabelled rectangle, one side is 5 cm . The missing side also appears to be longer than 5 cm , (although the diagram is not to scale) so to multiply 5 by anything greater than 5 will most certainly give a total area that is greater than $35 \mathrm{~cm}^{2}$.

